CS Education Research at Virginia Tech

Cliff Shaffer

Department of Computer Science

Virginia Tech

Goals of the Talk

- Introduce ongoing activities in the Department
- 2. Describe what we do, what is difficult, and how it is valuable
- 3. To relate some past successes and failures

CS@VT Role in Digital Education

- A Major Player in the Field
 - Competing with MIT, CMU, Perdue, GaTech, Duke
- SIGCSE'09
 - Largest departmental contingent?
 - 7 CS faculty
 - About that many students
 - About that many CS Alumni (faculty)

A Sampler of VT Work

- CITIDEL/Ensemble (part of NSDL) Ed Fox
- Collections
 - ETD/Syllabus Repository/AlgoViz Wiki
- Web-CAT Steve Edwards
- Cyber Arts Steve Harrison, Yong Cao
- Middle School Math Deborah Tatar
- Algorithm Visualization Cliff Shaffer
- Visual Debugging Godmar Back

Questions to Consider

- What are the (some) Goals?
- Is it scientific research?
- Is it Computer Science?

Goals

- Improve education
 - Course (and courseware) development
 - Improve understanding
 - Improve proficiencies (programming)

Is it Scientific Research?

- Does it have Measurable Effects?
- Is it Reproducible?
- Is it Novel?

Does it Have Measurable Effects?

- We want results to be quantifiable
- Performance scores:
 - Absolute: Difference between pretest and posttest
 - Relative: Performance gains in various treatments
- No Significant Difference
- Hawthorne Effect

Is it Reproducible?

- Isolate confounding influences
 - Instructor
 - Environment
 - Multiple treatments intermingled

Is it Novel?

- Computers are still relatively new in education
- Even in CS, we have only "recently" had the opportunity to use computers for education in ways other than as targets for programming exercises
- Which leads to the next issue...

Is it Computer Science?

- Some scenarios
 - What if I were a Chemistry Professor?
 - Instructional Technology Professor?
 - Engineering Education Professor?
 - CS Professor?
- In each case, the work is clearly of service to the discipline
- Note: ACM and IEEE both have Transactions in Education journals

Courseware Development

- Courseware development work is interdisciplinary:
 - Domain content (CS in our case)
 - Education/Instructional Technology
 - Human Factors/HCI
 - Software Engineering

Improving Data Structures

- Problem: Improve the retention/success rate in CS2606/CS3114
 - Key feature of the course is difficult projects
 - So, I focus on improving success rate in projects
- Interventions
 - Pairs programming
 - Project management
 - Increase student/Instructor interactions

Pairs Programming

- CS2606, 2007, 2 sections, no control
- Assigned partners, switch each project. Self-selected at end (but partners generally required)
- 3-4 week projects (4 total), fairly difficult
- "eXtreme Programming" style interactions encouraged

Pairs Programming: Outcomes

- Result: No difference detected in success rates or other outcome from prior semesters
- Somewhat contradictory of prior literature.
- Appears not to help or hurt students, in general. What about individuals?
- Mixed reception by students
- Hypothesis: Some benefit, some don't
 - Used "free choice" in future sections
 - No differences detected

Scheduling

- Managing large-scale projects involves scheduling activities
 - It is human nature to work better toward intermediate milestones.
- The same concepts can/should be applied to mid-sized projects encountered in class.
 - For any project that needs more than a week of active work to complete, break into parts and design a schedule with milestones and deliverables.

Scheduling

- CS2606, CS3114, 2007-2009 several sections, no control
- Require students to plan interim due dates, predict times required, weekly reports of time spent
- Mixed reaction from students. Some anecdotal evidence of appreciation afterward
- No recognizable change in outcomes

- CS2606, Fall 2006
- 3-4 week projects
- Kept schedule information:
 - Estimated time required
 - Milestones, estimated times for each
 - Weekly estimates of time spent.

- Results were significant:
 - 90% of scores below median were students who did less than 50% of the project prior to the last week.
 - Few did poorly who put in > 50% time early
 - Some did well who didn't put in >50% time early,
 but most who did well put in the early time

Correlations:

- Strong correlation between early time and high score
- No correlation between time spent and score
- No correlation between % early time and total time

What is the Mechanism?

- Correlations are not causal
 - Do they behave that way because they are good, or does behaving that way make them good?
- Spreading projects over time allows the "sleep on it" heuristic to operate
- Avoiding the "zombie" effect makes people more productive (and cuts time requirements)

CS 2606/CS 3114

 We know scheduling works, but how do we change behavior?

• Old:

- 50+ students
- Little interaction with instructor/TA as needed
- Solo programming

• New:

- 14 students
- Meet with instructor for each project
- Pairs if desired
- Schedule sheets

Outcome

No recognizable difference

Algorithm Visualization: Features

- Pseudocode display
- Back Button
- Animation vs. "next" step

Tutorials vs. AVs

- Integrated text and activities (applets)
- Guide questions/directed activity
- Built-in quizzing (future)
- Explanatory applets vs. "analysis" applets
- Takes a long time to develop (several students over two years)
- In progress:
 - Hashing
 - Memory management
 - Search Trees

AVs: Hashing Tutorial

- Section 1: Standard lecture and textbook for one week
- Section 2: In-class tutorial use for one week (same material)
- Student reaction: Universally positive for tutorial
- Section 2 had significantly better score in posttest

AV Community (AlgoViz)

- NSF CCLI grant, connections to NSDL/Ensemble project
- Problem:
 - Some identifiable successes for AVs
 - Have High faculty and student favorability ratings
 - But AVs have little overall impact on education
- Solution
 - Build a community of users/developers
 - Better disseminate best practices information

AlgoViz Wiki Catalog Data

- A collection of links to nearly 450 Avs
- Some results:
- Topical Distribution
- Who/where
- Quality
- Access Stability

NSDL Project Proposal

- Create a new model of "dissemination" to lower barriers to access
- Move away from the "digital library" model of users coming to collections
- Notification via social networks
- Focus on "community-driven" content development
 - Discussion, review, ratings
 - Think Amazon, but we have critical mass issues