



#### **GPUs for Smarties**

From Gaming to General Purpose Computing





Copyright © 2009 by Yong Cao



Copyright © 2009 by Yong Cao





# **Graphics Card for Computing?**

#### > Powerful, Cheap and Everywhere:

- 1.4 Billion Transistors. (GTX280)
- Nearly 1 Tera FLOPs. (GTX280)
- \$350 for each card.
- > Over one million GPGPUs sold. (NVIDIA
- Personal Supercomputer!



3 NVIDIA GTX295 Graphics Cards 6 GT200 GPUs 1440 Processing Codes 5.367 Tera FLOPs About 1,500 Watts Cost: \$4,000





IBM ASCI White at 2000 512 Nodes 8192 Processors **7.266** Tera FLOPs 106 tons 3 Million Watts Cost: \$110 Millions

Copyright © 2009 by Yong Cao







# **CUDA** "Compute Unified Device Architecture"

#### General purpose parallel programming model

#### Much easier to use

- C language, no Graphics APIs
- > Shallow learning curve: tutorials, sample projects, forum

#### Key features

- Simple management of threads
- Simple execution model
- Simple synchronization
- Simple communication



# Nice! Let's do it!

#### Wait! Limitations:

Tricky for non-data-parallel applications. Worst performance on GPU than CPU!

Data and control dependencies.

Research question: How to parallelize these algorithms?

Performance heavily impacted by hardware limitations.

Register file size, cache size, threads scheduling parameters.

Research question: How to redesign these algorithms to meet these hardware limitations?



### **Computing on GPUs**







## **Computing on GPUs**





#### **GPU Architecture** (Simplified)





### **GPU Architecture** (Simplified)





# **First application: Video Processing**

#### Goal: Real-time motion tracking in video stream using vectors.



Hand movement



Camera rotating on its optical axis

Participants: Francis Quek, Jing Huang, Sean Ponce, Seung-In Park, Yong Cao



# Vector Coherence Mapping<sup>1</sup>

- Compute the movement vectors between frames by applying
  - Spatial coherence constraints
  - > Temporal coherence constraints



## **Vector Coherence Mapping<sup>1</sup>**

| Fram | ne <b>i</b> $\longrightarrow$ Frame <b>i</b> +1 |
|------|-------------------------------------------------|



# **Vector Coherence Mapping<sup>1</sup>**

Run correlation for each point





# **Vector Coherence Mapping<sup>1</sup>**





# **Vector Coherence Mapping<sup>1</sup>**





# **Vector Coherence Mapping<sup>1</sup>**





# Vector Coherence Mapping<sup>1</sup>

Run accumulation of all sub image windows





# **Parallelizing VCM on GPU Demo**

Correlation: (data parallel)
Each thread handle on correlation

More than 40X speed up

 Accumulation: (data parallel)
 Each thread handle accumulation of one pixel







# Volume rendering project: (data parallel) Demo

#### Each thread processing one Ray



**Volume Ray Casting** 

More than 100X speed up

Participants: Colin Braley, Robert Hagan, Yong Cao



# **Temporal Data Mining: (non-data-parallel)**

#### > Application: Computational Neuroscience



Participants: Naren Ramakrishnan, Wu-chun Feng, Debprakash Patnaik, Sean Ponce, Jeremy Archuleta, Tom Scogland, Patrick Butler, Yong Cao



# **Temporal Data Mining: (non-data-parallel)**

Input stream:

MDAFBDNCABFDBCAABMADOAOEYBCD ... ... FQQEGTOKMAKMBCFOTUMCAHEBPC

Episode:



| UirginiaTech                  | GPU for Smarties                                      |
|-------------------------------|-------------------------------------------------------|
| <b>Temporal</b>               | Data Mining: (non-data-parallel)                      |
| Input stream:                 | CAABMADOAOEYBCD FQQEGTOKMAKMBCFOTUMCAHEBPC            |
| Epi                           | isode: $A \rightarrow B \rightarrow C$                |
| Algorithm: sc                 | an the input stream using a FSM to count.             |
| FSM based so<br>Non-data-para | can has many data and control dependencies.<br>allel. |
| How to increa                 | ase the level of parallelism?                         |
|                               |                                                       |



# **Temporal Data Mining: (non-data-parallel)**





### **Crowd Simulation: (non-data-parallel)**



**Participants:** Francis Quek, Wu-chun Feng, Yang Cao, Steve Harrison, Denis Gracanin, Sean Ponce, Richard Battle, Lee Calgett, Yong Cao



### **Crowd Simulation:**

- Global path planning for massive agents in real-time
  - Can not solve for each agent (does not scale)
- > Solution:
  - Models a crowd as a flow
  - Uses physics-based equations (PDEs)



- Divides the area into a discrete grid
- Creates a vector field for each grid cell
- Each agent simply follows the vectors of its nearest cells



#### **Eikonal Equation**

- Physics-based wave propagation equation
- Guarantees minimum cost path with no local minima

 $\|\nabla \phi(x)\| = C(x)$  Cost function

Potential field

| نىۋ_          |               |               | Frage         | e Rațe        | a: 193a       |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | ~             | ⊶             | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | Ť             | ~             | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\uparrow$    |               |               | Ŕ             | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               | >             |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | ÷             | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               | $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | ~>            |               |               |               |               |               | ?             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
| $\rightarrow$ |               | →             |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | 1             | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               | $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ | ĵ.            | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | 7             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
| $\rightarrow$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
| $\rightarrow$ |



- The numeric method for solving Eikonal equation is nondata-parallel
- Guarantees minimum cost path with no local minima

| id <b>:</b> ,32 |               | Frage | e Rațe | :_439 |  | $\rightarrow$ |
|-----------------|---------------|-------|--------|-------|--|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | ~             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | Ť             |               | $\rightarrow$ | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | Ŷ             |               |               | 7             | $\rightarrow$ | $\rightarrow$ |
|                 | ->            |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | ,<br>}        | $\rightarrow$ | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
|                 | <b>∽</b>      |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
|                 | →             |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               | 7             |               |               |               |               | Ń             | Ĺ             | <br>→         | $\rightarrow$ | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | ~             | $\rightarrow$ | $\rightarrow$ |
|                 | $\rightarrow$ |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ | Ţ             | $\rightarrow$ | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | Ţ             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               | $\rightarrow$ |
|                 |               |       |        |       |  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |



- The numeric method for solving Eikonal equation is nondata-parallel
- Guarantees minimum cost path with no local minima





- The numeric method for solving Eikonal equation is nondata-parallel
- Guarantees minimum cost path with no local minima





- The numeric method for solving Eikonal equation is nondata-parallel
- Guarantees minimum cost path with no local minima





- The numeric method for solving Eikonal equation is nondata-parallel
- Guarantees minimum cost path with no local minima





## **GPU acceleration with controllable cache**



UirginiaTech

### **GPU acceleration with controllable cache**





# **More research questions**

High level parallel programming frameworks
 Compiler, runtime scheduling, ...

### Algorithm transformation

Algorithm Hardware optimization

Hardware abstraction \_\_\_\_\_ Algorithm

➤Time complexity ≠ Performance

Parallel computing on hybrid devices

Applications: what if your program can execute in real-time?