
The Pervasiveness of
Software Engineering:

A Snapshot of
Research Initiatives

James D. Arthur

Path of Progression

Software Quality
Assessment

(Independent)
Verification & Validation

Requirements
Engineering

Capability
Engineering

Agile
Development

Large
Scale
Systems

Security

Software Quality Assessment

Tasking: US Navy

Two Distinct Software Development Efforts Using
Different Methodological Approaches

Maintaining Two Functionally Equivalent Systems

Which Methodology is best?

• How to Assess the Adequacy of a Development
Methodology

• How to assess the Effectiveness of a Development
Methodology

Dandekar, Rosson, Bundy

OPA Framework for
Software Quality Assessment

OBJECTIVES

PROCESS

PRODUCT

PRINCIPLES

PROJECT

ATTRIBUTES

DOCUMENTATION PROGRAMS

PropertiesProperties

(+)

Dandekar, Rosson, Bundy

Illustration of the
Framework Linkages

Maintainability

Use of Global
Variables

Use of
Parameters

Parameterless
Calls

Excessive #
of Parameters

Use of Data
Structures

(-)

(+)

(-)

(-)

(+)

Hierarchical
Decomposition

Functional
Decomposition

Information
Hiding

Stepwise
Refinement

Structured
Programming

Concurrent
Documentation

Coupling

Cohesion

Well-Defined
Interfaces

Ease of
Change

Complexity

Observable
Properties

Dandekar, Rosson, Bundy

Software Measurement
Life-Cycle Basis for Software Quality Assessment

The OPA Framework exploits both
Process and Product Indicators

Time

Preliminary
Design

Requirements
Analysis

Coding and
Unit Testing

Detailed
Design

CSC Integration
and Testing

CSCI
Testing

Assessment of
PROCESS

Assessment of
PRODUCT

IDEAL

Dandekar, Rosson, Bundy

OPA study indicated that
a substantial contributor to

poor product quality
was the lack of good

Verification and Validation

(Independent) Verification &
Validation

Tasking: NASA Langley

The Software Engineering Evaluation System (SEES)
was a Lifecycle process that emphasized the use of
V&V activities throughout the development process

To what extent can the Software Engineering
Evaluation System (SEES) support an Independent

V&V process?

Applied SEES’ to Aircraft Sizing Problem

M Groener

IV&V Interface to Development
Cycle

Requirements
Verification

Design
Verification

Code (or HW)
Verification Validation

Requirements Design Code (SW)
Fabricate (HW)

Integration
& Testing

Development Cycle

INTERFACE

IV&V Phases

• IV&V should complement the SD process
• IV&V should always be an adaptive , overlay process

M Groener

Aircraft Sizing Study

Group 1

IV&V Development

Requirements
Analysis

HLD Analysis

LLD Analysis

Code Analysis

Validation

HL Design

LL Design

STD

Coding

Unit Test

I&T

Acceptance
Test

Group 2

HL Design

LL Design

STD

Coding

Unit Test

I&T

Acceptance
Test

Data
Analyzed*

Group 1
Total DTR/FRs: 223

Critical: 97
Non-Critical: 126

Group 2
Total FRs: 62

Critical: 58
Non-Critical: 4

Includes only data
with recorded
effort >= 1 minute

*

Development

M Groener

GRAPH 3
Critical Faults: A Comparison Between Groups

16
20

31

6
0 2

8
14

58

24

97

34

0

20

40

60

80

100

R
eq

ui
re

m
en

ts

H
LD LL
D

C
od

e/
U

T

I&
T

TO
TA

L

Phase in which Critical Faults Found

IV&V Group
Non-IV&V Group

GRAPH 1

R
eq

ui
re

m
en

ts

H
ig

h
Le

ve
l D

es
ig

n

Lo
w

 L
ev

el
 D

es
ig

n

C
od

e
an

d
U

T

I&
T

Phase in which Critical Faults Found

N
um

be
r o

f F
au

lts
Comparison Between IV&V and Non-IV&V Groups

Total

M Groener

GRAPH 3
Mean Effort to Remove Faults

-MER Estimated-

4.8

4.1 4.1

1.4

2.8

2.1

0.0

1.0

2.0

3.0

4.0

5.0

Non-Critical Critical Combined

R
e
l
a
t
i
v
e

E
f
f
o
r
t IV&V Group

Non-IV&V Group

Mean Effort to Remove Faults
Boehm’s Measure

Fault Category
Non-Critical Critical Combined

IV
V

IV
V

IV
V

N
on

-IV
V

N
on

-IV
V

N
on

-IV
V

M Groener

IV&V study indicated that
the more critical errors

were due to poor
Requirement Specs

Slide 14Groener & Arthur RGM

Problem Statement
How does one evolve requirements

that meet the customers’
Needs and Intent?

What was needed:
An RE framework that
guided rather than dictated the
use of RE methods

Slide 15Groener & Arthur RGM

A Framework for
Requirements Generation

Indoctrination
Preparation Elicitation Evaluation

Requirements Capturing Requirements
Analysis

Iteration

Concept
Definition

Requirements Generation

Bring into focus the distinct components and
their role within requirements generation

Slide 16Groener & Arthur RGM

Process Components

Guidelines – suggestions or recommendations that
offer support by serving in an advisory capacity

Protocols – are rules that
establish boundaries through pre-defined constraints, and
impose operational, goal oriented actions through mandates

Monitoring Methodology – a methodology where
procedures are
a) continuously applied to monitor activities within the

requirements elicitation process to detect irregularities and
b) indicate methods to correct those irregularities

How might we apply our
understanding Software

Engineering to the development of
Large Scale Systems?

Producing
Change Tolerant Systems

Problem

Complex

Emergent

Incremental Development

Lengthy Lifetime

Extended Development Period

Requirements Change

Tech
nolo

gy

Adv
ance

men
t

Schedule Constraints

User
 Nee

ds

Chan
ge

Complex Emergent SystemComplex Emergent System

Change ToleranceChange Tolerance

Ramya Ravichandar

Capabilities Engineering Process

Needs Directives

Directives

Capabilities
Decomposition

Directives

Optimized Capabilities

Requirements

Finalized Capabilities

Formulation

Optimization
&

Reorganization

Phase 1

Phase 2

•High Cohesion
•Low Coupling
•Balanced

Abstraction Level

•High Cohesion
•Low Coupling
•Balanced

Abstraction Level

•Scheduling Constraints
•Technology Advancement
•Scheduling Constraints
•Technology Advancement

Transformation

Ramya Ravichandar

Cohesion

• Functional Cohesion
• Relevance Values : Immediate Parent

• Size: Higher level nodes

0.7
1

0.1 0.3

.525

43

Category Scale Failure to implement
directive

Catastrophic 1.0 Task Failure

Critical 0.7 Task success questionable

Marginal 0.3 Reduction in technical
performance

Negligible 0.1 Non‐operational impact

Relevance Values

Ramya Ravichandar

Coupling
• Among Capabilities

– Between constituent
directives

x y

p q

w

• Distance

• Coupling α 1

distance
• dist(x, y) =
6

• dist(x, w) =
2

• Probability Of Change

• P(y) = 1
directives

• P(y) = 1/3
Ramya Ravichandar

Balanced Abstraction Level

• Right Level of
Abstraction ?

• Trade‐off Analysis
– Increased Coupling

– Decreased Size

• Scenarios
– Common
Functionality

– No Common
Functionality

A B

A2

A3

B2B1

IncreasingIncreasing

IncreasingIncreasing

A1

Ramya Ravichandar

Function Decomposition Graph

Ramya Ravichandar

Validation: SAKAI System

Change‐Tolerance

H0: The change‐tolerance of a system is independent of an
RE or a CE‐based design

H1: The change‐tolerance of a system improves with the use
of a CE‐based design

Wilcoxon Signed Rank test: P‐value 0.018

Change‐Tolerance

H0: The change‐tolerance of a system is independent of an
RE or a CE‐based design

H1: The change‐tolerance of a system improves with the use
of a CE‐based design

Wilcoxon Signed Rank test: P‐value 0.018

Change Reduction

H0: The number of change‐requests generated during system
development is independent of an RE or a CE process

H1: The number of change‐requests generated during system
development is reduced with the use of a CE process

Wilcoxon Signed Rank test: P‐value 0.0002

Change Reduction

H0: The number of change‐requests generated during system
development is independent of an RE or a CE process

H1: The number of change‐requests generated during system
development is reduced with the use of a CE process

Wilcoxon Signed Rank test: P‐value 0.0002
Ramya Ravichandar

How might we apply our
understanding Software

Engineering to the development of
Smaller Scale Systems?

Introducing Agile Practices into an
Organizations Development

Process

Motivation & Problem Statement

• Growth of Agile Adoption
• People asking how to adopt agile

practices

Problem Statement
Absence of a structured approach to
guide agile adoption efforts

A Sidky

The Solution Approach

The Agile Adoption Framework
To guide and assist organizations in
adopting agile practices in their projects
– 4-Stage Process
– Sidky Agile Measurement Index

A Sidky

Overview of the 4-Stage Process

Stage 1
Discontinuing Factors

Stage 2
Project Level Assessment

Stage 2
Project Level Assessment

Stage 4
Reconciliation

Stage 3
Organizational Assessment

A Sidky

Embrace Change
to Deliver

Customer Value

Plan and Deliver
Software Frequently Human Centric Technical Excellence Customer Collaboration

Level 5
Encompassing

Low Process
Ceremony Agile Project Estimation Ideal Agile Physical

Setup

Test Driven Development

Paired Programming

No/minimal number of
Cockburn Level -1 or 1b
people on team

Frequent Face-to-face
interaction between
developers & Users
(Collocated)

Level 4
Adaptive

Client Driven
Iterations

Customer
Satisfaction
Feedback

Smaller and More
Frequent Releases
(4-8 Weeks)

Adaptive Planning

Daily Progress Tracking
Meetings

Agile Documentation (from
Agile Modeling)

User Stories

Collaborative,
Representative, Authorized,
Committed and
Knowledgeable
(CRACK) Customer
Immediately Accessible

Customer contract revolves
around commitment of
collaboration, not features

Level 3:
Effective

Risk Driven Iterations

Maintain a list of all
remaining features
(Backlog)

Self Organizing
Teams

Frequent face-to-face
communication
between
the team

Continuous Integration

Continuous Improvement
(i.e. Refactoring)

Have around 30% of
Cockburn Level 2 and
Level 3 people on team

Unit Tests

Level 2:
Evolutionary Evolutionary

Requirements

Continuous Delivery
(Incremental-Iterative
development)

Planning at different
levels

Software Configuration
Management

Tracking Iteration through
Working Software

No Big Design Up Front
(BDUF)

Customer Contract
reflective of Evolutionary
Development

Level 1:
Collaborative

Reflect and tune
Process

Collaborative Planning

Collaborative teams

Empowered and
Motivated Teams

Coding Standards

Knowledge Sharing Tools
(Wikis, Blogs)

Task Volunteering not
Task Assignment

Customer Commitment to
work with Developing Team

A Sidky

4-Stage Process

0%

20%

40%

60%

80%

100%

Understandability Practicality Necessity Completeness Effectiveness

All Participants

0%

20%

40%

60%

80%

100%

Understandability Practicality Necessity CompletenessEffectiveness

Over 6 Years Experience Leading Agile Adoption

Strongly Agree
Slightly Agree
Neither Agree nor Disagree
Slightly Disagree
Strongly Disagree

A Sidky

All Participants Over 6 Years Experience Leading Agile Adoption

Understandability Practicality Necessity Completeness
Effectiveness

Understandability Practicality Necessity Completeness Effectiveness

Sidky Agile Measurement Index (SAMI)

0%

20%

40%

60%

80%

100%

Comprehensiveness Practicality Necessity Relevance

All Participants

0%

20%

40%

60%

80%

100%

Comprehensiveness Practicality Necessity Relevance

Over 6 Years Experience Leading Agile Adoption

Strongly Agree
Slightly Agree
Neither Agree nor Disagree
Slightly Disagree
Strongly Disagree

All Participants
Over 6 Years Experience Leading Agile Adoption

Understandability Practicality Necessity Completeness
Effectiveness

Understandability Practicality Necessity Completeness Effectiveness

A Sidky

How might we apply our
understanding Software
Engineering to develop

Secure Systems?

Specification,
Verification and Validation

The Framework

Object
Model

Taxonomy of
Vulnerabilities

V&V
Strategies

Component

Dynamic
Memory

Goal, Target, Method

Buffer

A Bazaz

Taxonomy of Vulnerabilities: Structure
Taxonomy of

Vulnerabilities

Main Memory Input/Output Cryptographic
Resources

Dynamic
Memory

Static
Memory

Network
Interface

Filesystem Randomness
resources

Cryptographic
Algorithms &

Protocols

Constraints/
Assumptions

(13)

Constraints/
Assumptions

(2)

Constraints/
Assumptions

(5)

Constraints/
Assumptions

(10)

Constraints/
Assumptions

(7)

Constraints/
Assumptions

(9)

A Bazaz

Process / Object Model
Of Computing

Object ModelTaxonomy of
Vulnerabilities

V&V
Strategies

Component

Software Process

Memory I/O

Cryptographic Resources

Input

Output

Uses
OS Interface

Uses OS Interface

• Process objects
– Holds data
– Set of operations,

e.g., create, remove,
read etc.

– Examples: files,
directories, buffers,
pointer variables,
etc.

A Bazaz

Object Model: Structure

Process
Objects

(5)

Object Model

Main
Memory

Input /
Output

Cryptographic
Resources

Dynamic
Memory

Static
Memory

Network
Interface

Filesystem Randomness Cryptographic
Algorithms &

Protocols

Process
Objects

(5)
Process
Objects

(3)

Process
Objects

(2)
Process
Objects

(2)

Process
Objects

(3)

A Bazaz

V&V strategies component

• Guided by individual object / vulnerability
relationships as defined by the taxonomy
– Develop base strategies to test for presence of

vulnerabilities
• Target, Goal, and Method

– Base Strategies Test Strategies Test Cases

• 46 base-strategies currently defined

Object ModelTaxonomy of
Vulnerabilities

V&V
Strategies

Component

A Bazaz

Current Initiatives
Shvetha Soundararajan

A Software Structured Agile Approach to
Software Development (MS)

Assessing Product and Process Quality:
An AGILE Perspective (PhD)

Lee Clagett & Beau Frazier

Software Security:
Access-Driven VV&T

The Proud, The Few….
The Software Engineers

But, when the truth is told….

We Are ALL Software Engineers

	The Pervasiveness of Software Engineering:�A Snapshot of �Research Initiatives
	Path of Progression
	Software Quality Assessment
	OPA Framework for �Software Quality Assessment
	Illustration of the �Framework Linkages
	Software Measurement�Life-Cycle Basis for Software Quality Assessment
	OPA study indicated that � a substantial contributor to �poor product quality �was the lack of good �Verification and Validati
	(Independent) Verification & Validation
	IV&V Interface to Development Cycle
	Aircraft Sizing Study
	IV&V study indicated that � the more critical errors�were due to poor �Requirement Specs
	A Framework for �Requirements Generation
	Process Components
	How might we apply our understanding Software Engineering to the development of �Large Scale Systems?��Producing �Change Toler
	Problem
	Capabilities Engineering Process
	Cohesion
	Coupling
	Balanced Abstraction Level
	Function Decomposition Graph
	Validation: SAKAI System
	How might we apply our understanding Software Engineering to the development of �Smaller Scale Systems?��Introducing Agile Pra
	Motivation & Problem Statement
	The Solution Approach
	Overview of the 4-Stage Process
	4-Stage Process
	Sidky Agile Measurement Index (SAMI)
	How might we apply our understanding Software Engineering to develop �Secure Systems?��Specification, �Verification and Valida
	The Framework
	Taxonomy of Vulnerabilities: Structure
	Process / Object Model�Of Computing
	Object Model: Structure
	V&V strategies component
	Current Initiatives
	The Proud, The Few….�The Software Engineers

