10/5/2018 Lab 11 CyberSecurityLab 01

Lab 11 CyberSecurityLab 01

Q) Publish X Edit

Lab 11 CyberSecuritylLab 01

Learning Objectives

o Get more experience with sentinel nodes, iterators and doubly linked list
o Consider OO design for storing data as key-value pairs
» Explore implications on efficiency and resource management

https://canvas.vt.edu/courses/77050/assignments/472282 1/4



10/5/2018 Lab 11 CyberSecurityLab 01

<< Java Interface=>
& KVStore<K,v>

cybearsecurity

o getiK)
@ put(K\V)void

?

<< Java Interface=>

@ LinkedKVStorelnterface<K, V>
cybersecurity.lab1

@ ISEmpty()boolean
{:? size()int .
w clear()void
@ getFirst(K)
@ getLast(K)
@ addLast(K,V)void
@ addFirst(K,V)void
@ removeFirst{K):boolean
@ removelast{K)boolean
@ contains(K)boolean
o get(K)

@ put(K\Vvoid
ﬁ << Java Class>>
; (9 KVStorelterator
<< Java Class>> cybersecurity. lab1
(B LinkedKVStore<K, V> o current: Node
b rity.lab 1
it FKVStorelterator()
3 bt o hasMext{):boolean
o head: Node
@ next()

o tail: Mode

arLinkedkKVStare()
@ ISEmpty():boolean

@ size(kint

@ clear():void

o getFirst(K) @\Qﬁv\

@ getLast(K)

o addLast(K,V):void EetavalGinsses
o addFirst(K,V)void ©Node

cybersecurity.lab1

@ removeFirst(K):boolean

@ removelast{K)boolean o prev: Node
@ contains(K):boolean o next: Node
@ iterator():lterator<K= o key: K
@ toString():String o value:V
&' Node()
e MNode(KV)

@ linkWith{Mode void
m insertAfter(Node )void
m remove()void

As we progress in our implementation of data structures we can consider design choices that improve
the efficiency of our code and thus the availability of resources on the machine.

https://canvas.vt.edu/courses/77050/assignments/472282 2/4



10/5/2018 Lab 11 CyberSecurityLab 01

Download Skeleton: Lab11CyberSecurity01.zip £

Study the UML diagram above and the Skeleton code. In LinkedKVStore.java you can see how
changes to the underlying linked chain are made with the Node methods insertAfter(Node curr) and
remove(). Notice how many methods use a for loop to iterate through the linked chain, this is a
readable variation of how you are accustomed to seeing it implemented with a while loop.

You are given the inner skeletons for the Node and Iterator classes and you need to implement the
methods. Once you've implemented the Node constructors, you can follow the videos below to guide
you conceptually through the steps for the Node methods. Notice how this Node Class provides
functionality to link and unlink nodes from each other so that LinkedKVStore member methods don't
directly manipulate the Node's field variables. The linkWith(Node nextNode) is a helper method for
both insertAfter(Node curr) and remove(). Remember to call linkWith() and reuse your code!

Both insertAfter(Node curr) and remove() and responsible for updating the size field accordingly.

Links this node to parameter node:

Inserts this node after a parameter node:

Removes this node:

Use your pre-lab test to test the methods in LinkedKVStore.java. The lterator's next() method should
throw a NoSuchElementException if it is called when there is no next element. Remember this list uses
sentinel nodes so the node with the last element in it references tail and not null.

Properly testing those methods will test the inner class methods.

For the implementation of an Iterator used in this lab, the client/test code should get a new iterator any
time there is a change to the list. For example: if the client/test code is using an iterator iter on a list,

https://canvas.vt.edu/courses/77050/assignments/472282 3/4



10/5/2018 Lab 11 CyberSecurityLab 01

after a call to any of the methods put, get, addLast, addFirst, removelLast or removeFirst, then the code
should get a fresh iterator (iter = list.iterator()).

Submit to WebCAT.

Points 100
Submitting Nothing

Due For Available from Until

- Everyone - -

~+ _Rubric

https://canvas.vt.edu/courses/77050/assignments/472282 4/4



