High Performance Computers and Compilers: A Personal Perspective

Fran Allen
allen@watson.ibm.com

Virginia Tech
September 11, 2009
Peak Performance Computers by Year

Doubling time = 1.5 yr.

Year Introduced

1E+2 1E+4 1E+6 1E+8 1E+10 1E+12 1E+14 1E+16

1E+2 1E+4 1E+6 1E+8 1E+10 1E+12 1E+14 1E+16

ENIAC (vacuum tubes)

UNIVAC

IBM 701

IBM 704

CDC 7600

CDC STAR-100 (vectors)

CDC 6600 (ICs)

IBM 7090 (transistors)

CRAY-1

X-MP4

X-MP2 (parallel vectors)

CRAY-2

Y-MP8

i860 (MPPs)

ASCI Red

ASCI Blue Pacific

ASCI White

Blue Gene

BlueLight

CM-5

Paragon

Delta

NWT

CP-PACS

Delta

CM-5

Paragon

Delta

NWT

CP-PACS

Delta

CM-5

Paragon

Delta

NWT

CP-PACS

Delta

CM-5

Paragon

Delta
Talk outline

§ A personal tour of compilers and computers for high performance systems

§ The new performance challenge

§ Addressing the performance challenge

§ Discussion
In 1957 I joined IBM Research as a Programmer.
Fortran Project (1954-1957) Goals

- User Productivity
- Program Performance

THE FORTRAN GOALS BECAME MY GOALS

John Backus
The Fortran Language and Compiler

§ Available April 15, 1957

§ Some features:
 ▶ Beginnings of formal parsing techniques
 ▶ Intermediate language form for optimization
 ▶ Control flow graphs
 ▶ Common sub-expression elimination
 ▶ Generalized register allocation - for only 3 registers!

§ Spectacular object code!!
Stretch (1956-1961)

- Goal: 100 times faster than any existing machine
- Main Performance Limitation: Memory Access Time
- Extraordinarily ambitious hardware
- Equally ambitious compiler
HARVEST (1958 - 1962)

- Built for NSA for code breaking
- Hosted by Stretch
- Streaming data computation model
- Eight instructions and unbounded execution times
- Only system with balanced I/O, memory and computational speeds (per conversation with Jim Pomerene 11/2000)
- ALPHA: a language designed to fit the problem and the machine
Stretch – Harvest Compiler Organization

- Fortran
 - Translation
- Autocoder II
 - Translation
 - IL
 - OPTIMIZER
 - IL
 - REGISTER ALLOCATOR
 - IL
 - ASSEMBLER
 - OBJECT CODE
- ALPHA
 - Translation

STRETCH

STRETCH-HARVEST
Stretch - Harvest Outcomes

- Stretch machine missed 100 x goal by 50%!
- A new Fortran compiler replaced original
- But “Stretch defined the limits of the possible for later generations of computer designers and users.”
 (Dag Spicer - Curator Computer History Museum)
- National Security Agency used Harvest for 14 years

Goal: Fastest Machine in the World
- Pipelined and superscalar
- Branch prediction
- Out of order instruction execution
- Instruction and data caches

Experimental Compiler:
- Built early to drive hardware design
- Compiler code often faster than the best hand code

John Cocke
ACS Compiler Optimization Results

§ Language-independent machine-independent optimization

§ A theoretical basis for program analysis and optimization

§ A Catalogue of Optimizations which included:
 ▶ Procedure integration
 ▶ Loop transformations: unrolling, jamming, unswitching
 ▶ Redundant subexpression elimination, code motion, constant folding, dead code elimination, strength reduction, linear function test replacement, carry optimization, anchor pointing

§ Instruction scheduling

§ Register allocation

IBM CANCELLED ACS PROJECT IN 1968!
PTRAN: Automatic Parallelization (1980s to 1995)

§ Research
 - Static Single Assignment (SSA)
 - Constructing Useful Parallelism
 - Whole Program Analysis Framework

§ Compiler development
 - RP3/NYU Ultra Computer
 - IBM’s XL Family of Compilers
 - Fortran 90

§ Run-time technologies
 - Dynamic Process Scheduling
 - Debugging
 - Visualization
1994 was a bad year for compilers and parallelism

- PTRAN project at IBM cancelled
 “IBM will never build another compiler.”
 “Parallelism is dead.”

- HPF project at Rice cancelled
Talk outline

§ A personal tour of some languages, compilers, and computers for high performance systems

§ The new performance challenge

§ Addressing the performance challenge

§ Discussion
Technology is Hitting a Performance Limit

- Transistors continue to shrink
- More and more transistors fit on a chip
- The chips are faster and faster
- Result: HOT CHIPS!
Real Performance Stops Growing as Fast

- Performance (GOPS)
- Gap
- Transistors
- Real Performance

Hardware Performance Solution: Multicores

- Simpler, slower, cooler processors (multicores)
- More processors on a chip
- Software (and users) organize tasks to execute in parallel on the processors
- Parallelism will provide the performance!!!
Parallelism

§ High performance computing applications and computers have long used parallelism for performance.

è Current software cannot provide the parallelism needed

è Users can’t either
Two Perspectives on the Performance Challenge

§ “The biggest problem Computer Science has ever faced.” John Hennessy

§ “The best opportunity Computer Science has to improve user productivity, application performance, and system integrity.” Fran Allen
Talk outline

§ The new performance challenge

§ A personal tour of some languages, compilers, and computers for high performance systems

§ Addressing the performance challenge

§ Discussion
Urgent To-Dos

§ New, very high level languages

§ New compilers

§ New compiler techniques to manage data: locality, integrity, ownership, ... in the presence of parallelism.

§ Eliminate caches

§ Remember the John Backus and Grace Hopper goals:
 ✓ User Productivity
 ✓ Program Performance
END OF TALK

BEGINNING OF A NEW ERA IN LANGUAGES and COMPILERS (I HOPE)
End Note

“The fastest way to succeed is to double your failure rate.” – T. J. Watson, Sr.