A Shared Memory Parallel Algorithm for Data Reduction Using the Singular Value Decomposition

Rhonda Phillips, Layne Watson, Randolph Wynne

April 16, 2008

Outline

- Motivation
- Algorithms
- Study Area
- Results and Analysis
- Implementation Details
- Conclusions

Motivation

- Satellite images are increasing in size.
 - Spectral and spatial resolutions are increasing.
- Having too many features for the training dataset degrades classification accuracy (overfitting issues).
- The SVD can be expensive to compute, especially for a large dataset.

SVD-based feature reduction

- SVDReduce:
 - Consider $X = U\Sigma V^t$ to be $m \times n$ and m << n.
 - In order to represent X using k dimensions (k < m), set the singular values in positions k + 1 to m in Σ to zero to form Σ.
 - X can be represented by coordinates $\tilde{\Sigma}V^t$.
- SVDTrainingReduce:
 - Instead of using the image X as in SVDReduce, a representative training data set T is used to compute $T = \hat{U}\hat{\Sigma}\hat{V}^t$.
 - X is projected onto the basis set \hat{U} .

Study Area

A hyperspectral image containing 224 bands taken over the Appomattox Buckingham State Forest was used to obtain all execution times listed.

Execution Times for *SVDReduce*

U, the left singular vectors, are computed using the image X, and X is projected onto U.

Operation	Time (seconds)
SVD Factorization	340.04
Matrix-Vector Multiply	184.33
Other	8.05
Total	532.42

Execution Times for *SVDTrainingReduce*

 \hat{U} , the left singular vectors, are computed using the training data T, and X is projected onto \hat{U} .

Operation	Time (seconds)
SVD Factorization	.24
Matrix-Vector Multiply	180.07
Other	4.71
Total	185.02

Parallel SVD based feature reduction

- SVDTrainingReduce is faster than SVDReduce, and is more suited to run on a parallel computer.
- The SVD factorization and the projection of X onto \hat{U} can be computed in parallel.
 - The SVD factorization requires much less execution time than projecting X onto \hat{U} .
 - In practice, using a (shared memory) parallel SVD factorization was slower than using the serial SVD factorization.

Parallel Speedup

Parallel speedup of pSVDTrainingReduce including all input/output operations.

Parallel Speedup

Parallel speedup of pSVDTrainingReduce without input/output execution times included.

Implementation Issues

- Scheduling
- Data Placement
- Private vs. Shared variables
- Cache

Scheduling

The speedup increase using all processors can be repeated on smaller SGI Altixes.

Speedup without input/output using 12 processors.

Scheduling

- Referring to previous speedup graphs, there is an increase in speedup when guided scheduling and all processors are used.
 - Guided scheduling is a type of dynamic scheduling that varies the chunk size.
- This speedup is also observed for dynamic scheduling.
- Although these are dynamic scheduling strategies, data initialization and placement (using dplace) is important.
- Allowing the underlying hardware and software to assign work to processors results in a large speedup, but only when using all processors.

Scheduling

Illustration of execution time differences using various scheduling and data placement strategies when all processors are involved in computation.

Data Placement

In this zoom of parallel speedup without input/output, the static and guided scheduling strategies using dplace and consistent memory access outperform a naive approach.

Variable Storage

- U is the basis set that every vector in X is projected onto.
- U can be physically stored as static or dynamic memory, and can be private or shared across processors during parallel execution.

Execution times for different methods of storing U using 12 processors.

Variable Type	Time (seconds)
static shared	20.586
static private	17.741
dynamic shared	17.419

Cache optimization

- In the previous slide, cache coherency overhead resulted in increased execution times for static memory that is shared across processors.
- As this algorithm was implemented in Fortran 95, which uses column major order, all data is accessed by column.
 - Each processor then accesses data elements in the order they are laid out in memory, maximizing cache hits.
- The data is also distributed across columns to minimize the likelihood that processors are operating on the same cache line.

Conclusions

- *pSVDTrainingReduce* is faster than *SVDTrainingReduce*, which is faster and parallelizes better than *SVDReduce*.
- If input/output are excluded from the execution times, pSVDTrainingReduce scales well to 128 processors since the SVD factorization is a small portion of the algorithm.
- Even for straightforward parallel algorithms such as pSVDTrainingReduce, performance tuning is essential.
- There is something interesting happening "under the hood" of the SGI Altix when dynamic scheduling strategies are employed and all processors are utilized.