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Introduction
Optimization problem and category

1. Problem statement:

min
x∈D

f0(x),

D = {x ∈ D0 | fj(x) ≤ 0, j = 1, . . . , J},

where D0 =
{

x ∈ En | ℓ ≤ x ≤ u
}

is a simple box constraint set.

2. Problem category
• Discrete domain D.

Combinatorial problems.

• Continuous domain D.

Unconstrained (or with simple bound constraints) and constrained problems.
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Introduction
Optimization approaches (classified by Taylor’s approxima tion)

1. Second order:
For example, Newton-like methods using the Hessian matrix.

2. First order:
For example, steepest descent methods using the gradient vector.

3. Zero order:
• Deterministic search methods:

For example, direct search methods—pattern search (DIRECT) and simplex-based
search (multi-directional search, adaptive directional search, etc.), and branch and
bound search methods.

• Nondeterministic (heuristic) search methods:

For example, simulated annealing, Tabu search, and genetic algorithms.
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Introduction
Direct search methods

1. Characteristics
Derivative-free; only function values are needed; global convergence properties
are guaranteed under some conditions.

2. Example: simplex-based multi-directional search (Dennis and Torczon, 1991)

e2

e1

r1

r2

(3) Contraction: (v1, v2) to (c1, c2)

v0 c1

c2

v1

v2 Original simplex: (v0, v1, v2)
Search steps:
(1) Reflection: (v1, v2) to (r1, r2)

 
(2) Expansion: (r1, r2) to (e1, e2)
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DIRECT Global Search Algorithm
DIRECT = global search + local search

It is a good choice for engineering design problems, which have
1. no convexity assumptions (local==global for strictly convex functions),
2. multiple local minima (local search is easily trapped),
3. and black-box designs (unpredictable system parameters).
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DIRECT Global Search Algorithm
DIviding-RECTangles in action
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DIRECT Global Search Algorithm
Algorithm description

Given an objective function f and the design space D = D0:
Step 1. Normalize the design space D to be the unit hypercube. Sample the

center point ci of this hypercube and evaluate f(ci). Initialize fmin = f(ci),
evaluation counter m = 1, and iteration counter t = 0.

Step 2. Identify the set S of potentially optimal boxes.
Step 3. Select any box j ∈ S.
Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let δ equal
one-third of this maximum side length.

(2) Sample the function at the points c ± δei for all i ∈ I, where c is the center of
the box and ei is the ith unit vector.

(3) Divide the box j containing c into thirds along the dimensions in I, starting
with the dimension with the lowest value of wi = min{f(c + δei), f(c − δei)},
and continuing to the dimension with the highest wi. Update fmin and m.

Step 5. Set S = S − {j}. If S 6= ∅ go to Step 3.
Step 6. Set t = t + 1. If iteration limit or evaluation limit has been reached, stop.

Otherwise, go to Step 2.
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DIRECT Global Search Algorithm
Global convergence property

f* 

represents a potentially optimal box
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fmin

• Box selection rule: box j is potentially optimal if

f(cj) − K̃dj ≤ f(ci) − K̃di,

f(cj) − K̃dj ≤ fmin − ǫ|fmin|,
for some K̃ > 0 and i = 1, . . . , m (the total number of subdivided boxes)

• Lipschitz continuity is required in the domain.
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DIRECT Global Search Algorithm
Algorithmic Options

1. Box selection rules
• Optional “aggressive switch”: Switch on/off the convex hull processing used

in identifying potentially optimal boxes.
• ǫ = 0 by default.

2. Stopping rules
• Number of iterations or function evaluations.
• Minimum diameter: Terminate when the best potentially optimal box’s

diameter is less than this minimum diameter.
• Objective function convergence tolerance:

τf =
f̃min − fmin

1.0 + f̃min

,

where f̃min represents the previous computed minimum. The algorithm stops
when τf becomes less than a user specified value.
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Dynamic Implementation
Motivation

1. Challenges:
• Unpredictable storage requirement

• Execution overhead of subdividing potentially optimal boxes

2. Better mapping: from 1-D data structures to a 2-D data structure.

A box sequence

B
ox C

enter F
unction V

alues Increasing

Box Diameters increasing
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Dynamic Implementation
Box structures

1

m

1

m

1

m

M
1 2 n n+1 2n

BoxMatrix

BoxLink

BoxLink

sibling

next prev

sibling

child

M

• Two-dimensional dynamic structure

• Priority queue vs. sorted list

13 Virginia Tech



Dynamic Implementation
Linked list structures

setInd

1 2 n

1 2 n

n+1 2n

n+1 2n

1 2 n n+1 2n

3 17 1 *

0.9 0.8 0.7 *

* * * * * 17

setDia

setFcol

Decreasing box sizes

next

prev

next

prev

next

prev

stack top

insertion position

• Maintain 2-D structure

• Recycle box sequence columns
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Dynamic Implementation
Performance studies

• Objective function convergence tolerance τ
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Dynamic Implementation
Performance studies (cont.)

• Comparison of static and dynamic implementations (dimension n, L iterations,
time in msec, memory usage (maximum working set size) in pages (1 page =
512 bytes)).

Baker Gablonsky dynamic structures
Problem n L time memory time memory time memory

Griewank 2 50 172 10264 34 2224 85 1040
Griewank 5 50 199 11504 34 2352 73 1024
Griewank 10 50 310 15424 51 2648 110 1616
Griewank 15 50 639 18280 88 3232 192 2744
Griewank 20 50 * * 170 4464 397 6080
Griewank 50 70 * * * * 6161 82664
Quartic 2 50 108 10240 26 2176 25 520
Quartic 5 50 151 11488 31 2240 27 528
Quartic 10 50 441 15432 36 2472 58 1160
Quartic 15 50 1260 18336 54 2992 125 2176
Quartic 20 50 * * 82 3872 240 4560
Quartic 50 90 * * * * 6572 86656
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Memory Reduction Techniques

If MAX ITER is used, LBC (limiting box columns) only keeps Imax − Icurrent + 1
boxes in each box column.
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(Left) For the original DIRECT, the memory requirement imposed by the
intermediate data grows rapidly as the problem dimension N grows.

(Right) LBC reduces the memory usage by 10–70% for the selected high-
dimensional test problems, including two real world applications—cell cycle
modeling for frog eggs (FE) and budding yeast (BY) in systems biology.
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Parallel Scheme

A design with a pure message passing model and globally shared workers.

SD

SD SD

SD

global worker pool

1

SM

SM

1,1

SM 1,n1,2
2

SM2,1

m

SMm,1

3 SM3,1

masters
subdomain

workers
W1 W2 W3 Wk
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Application in Systems Biology

Good test cases for pVTdirect: high-dimensional, nonlinear ODEs, expensive
function evaluation cost, multiple local minima.

Model # ODEs # parameters Cost
Frog Eggs 3 16 3 sec.
Budding Yeast 36 143 11 sec.
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With more function evaluations generated across multiple subdomains, the same
MAX ITER likely yields a better solution than the single domain search, especially
for problems with irregular, asymmetric structures.
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Effect of Chunk Size
Nb: number of evaluations per task.

A better load balancing is achieved when Nb = 1. Nb > 1 should only be used to
stack cheap function evaluations.
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Worker Workload Range Modelling

�
�
�

�
�
�

(a) (b) (c)

N
or

m
al

iz
ed

 W
or

kl
oa

d

Workload Range Comparison

 0.96

 0.92

 0.9

 0.94

 0.98

 1.08

 1.06

 1.04

 1.02

 1

 1.1

 1

 0.975

 0.98

 0.985

 0.99

 0.995

 1.01

 1.005

 1

 1.015

 1.02

 1.025

 0.98

 0.985

 0.99

 0.995

 1.005

 1.01

 1.015

 1.02

(a) m = 1, n = 1, k = 99; (b) m = 1, n = 4, k = 196; (c) m = 4, n = 1,
k = 196 (pink bars are the model estimations and black ones are the experimental
measurements).
A bounding workload model estimates the workload range (WLl, WLu) given m,
n, k, Nb, Tf , Imax, and {Fi} (a sequence of function evaluation numbers, i = 1, 2,
. . ., Imax). All measurements are within the range of the model estimations.
The randomness of workers’ requests to masters results in a better balanced
workload than the worst case estimated by the model.
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Extreme Parallel Schemes

n: number of masters per subdomain; k: number of workers.

boxes boxes boxes

SMi,1 SMi,2 SMi,3 SMi,n

Horizontal Scheme

function evaluations

WORKER POOL

SM i,j

W1 W2 W3 Wk

Vertical Scheme

n affects the efficiency of SELECTION and data distribution, but has little impact
on the workload balance among workers under the combined schemes. The
purpose of using n > 1 masters per subdomain is to share the memory burden.

k > 2mn workers should only be used for expensive objective functions (Tf > Tcp).
Workload of function evaluations is better balanced in the vertical scheme with
workers than in the horizontal scheme without workers.
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Package VTDIRECT95

• Code & usage documentation.

• Portable distribution and user-configurable installation.

• Verification and test suites.

sample_pmain.f95

VTdirect.f95

VTdirect_MOD pVTdirect_MOD

pVTdirect.f95

sample_main.f95 objfunc.f95 use

include

module

file

REAL_PRECISION VTDIRECT_CHKPT

shared_modules.f95

VTDIRECT_COMMSUBVTDIRECT_GLOBAL
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Checkpointing Overhead
105 evaluations, Tf = 0.0,
nc: no checkpointing,
sv: saving, r: recovery

Serial
# I Tnc Tsv Tr

GR 3057 10.58 18.85 11.50
QU 12238 56.70 87.38 57.28
RO 1198 8.12 11.61 9.22
SC 3637 11.97 21.43 12.96
MI 1968 29.69 34.61 24.05

Parallel
# Tnc Tsv Tr(1) Tr(2) Tr(3) Tr(4) Tr(5) Tr(7) Tr(8)

GR m1 13.22 21.06 14.43 26.11 – 22.76 – – 27.86
GR m3 11.95 21.07 – – 12.71 – 23.49 27.24 –
QU m1 55.87 109.15 57.42 76.27 – 86.51 – – 104.47
QU m3 68.58 83.04 – – 49.52 – 95.78 107.46 –
RO m1 9.33 12.80 10.70 16.89 – 13.74 – – 14.50
RO m3 6.61 10.47 – – 7.02 – 13.28 13.89 –
SC m1 14.44 23.38 15.37 30.05 – 26.11 – – 30.39
SC m3 14.49 25.59 – – 13.68 – 34.40 29.87 –
MI m1 30.31 35.58 23.30 21.57 – 18.87 – – 20.68
MI m3 14.40 17.84 – – 11.74 – 18.28 20.03 –
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Mesh Adaptive Direct Search
MADS in action
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Mesh Adaptive Direct Search
Algorithm description

Given Ω ∈ Rn, f : Rn → R, fΩ(x) =

{

f(x), x ∈ Ω
∞, otherwise

, mesh size ∆m > 0, poll

size ∆p > 0, x0 ∈ Ω, initial mesh, k := 0.

Step 1. (search step) Evaluate fΩ at a (possibly empty) set of points on the
mesh.

Step 2. (poll step) Evaluate fΩ at all points in a frame (subset of current mesh)
centered at the current best point xk.

Step 3. (adapt) Adjust the mesh and poll sizes and extend the mesh.
Step 4. If an appropriate stopping criterion has been met, stop. Otherwise, set

k := k + 1 and go back to Step 1.
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Mesh Adaptive Direct Search
Definitions

Sk: the set of all points at which fΩ was evaluated before iteration k.

D: an n × nD matrix, where each column D·j = Gzj (for j = 1, 2, . . . , nD) for some
fixed nonsingular generating matrix G ∈ Rn×n and nonzero integer vector zj ∈ Zn.
The columns of D must also be a positive spanning set, Pos(D) = Rn.

Mk: the mesh Mk =
⋃

x∈Sk
{x + ∆m

k Dz : z ∈ N nD}.

Dk: positive spanning set derived from the columns of matrix D.

Pk: the frame Pk = {xk + ∆m
k d : d ∈ Dk} ⊂ Mk determined by poll size.
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Mesh Adaptive Direct Search
Detailed algorithm description

Step 1. Let x0 ∈ Ω and 0 < ∆m
0 ≤ ∆p

0. Let D be an n × nD matrix with the
properties described earlier. Set the iteration counter k := 0.

Step 2. Perform the search step. This step varies among the individual
algorithms; in all algorithms fΩ is evaluated at a finite subset of points
(called trial points) on the mesh Mk. If a trial point y is found such that
fΩ(y) < fΩ(xk), then the algorithm may go to Step 4 with xk+1 := y.

Step 3. Perform the poll step, evaluating fΩ at points from the frame Pk ⊂ Mk

until a frame point xk+1 is found with fΩ(xk+1) < fΩ(xk) or fΩ has been
evaluated at all of the points in Pk.

Step 4. Update ∆m
k+1 and ∆p

k+1
according to the specific algorithm’s rules. In all

algorithms,
(1) ∆m

k+1 is greater than or equal to ∆m
k if an improved mesh point is found,

(2) ∆m
k+1 is less than ∆m

k if an improved mesh point is not found,
(3) ∆p

k+1
is greater than or equal to ∆m

k+1, and
(4) lim infj→∞ ∆m

j = 0 if and only if lim infj→∞ ∆p
j = 0.

Step 5. If an appropriate stopping criterion has been met, stop. Otherwise, set
k := k + 1 and go back to Step 2.
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Application in Aircraft Design: HSCT
Problem scenario

Optimization objective: minimize takeoff gross weight (TOGW) for a range
of 5500 nautical miles and a cruise Mach number of 2.4, while carrying 251
passengers.

Typical high speed civil transport (HSCT) configuration.
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Application in Aircraft Design: HSCT
Optimization design variables and constraints

1. 28 design variables:
• Geometry of the aircraft, 24 variables in 6 categories:

wing planform,
airfoil shape,
tail areas,
nacelle placement,
and fuselage shape.

• Idealized cruise mission, 4 variables:

mission fuel,
engine thrust,
initial cruise altitude,
and constant climb rate.

2. 68 constraints in 3 categories:
• Geometry
• Performance
• Aerodynamic
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Application in Aircraft Design: HSCT
Problem formulation

1. Issue #1 — convergence determination.
For this study, the algorithm was run for a fixed number of loops or iterations.
Since the purpose of the optimization was to identify promising regions of the
design space, it was unnecessary to tightly converge to a global optimum.

2. Issue #2 — incorporation of constraints.
Constraints were accounted for through the use of a simple penalty function, as
follows. Let x be the 28-dimensional design vector, f(x) the TOGW, and gi(x) ≤ 0
the constraints. The constrained optimization problem

min f(x) subject to gi(x) ≤ 0, i = 1, ..., 68,

is converted to the unconstrained optimization problem

min f(x) + 10

68
∑

i=1

max
{

0, gi(x)
}

.
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Application in Aircraft Design: HSCT
Parallel DIRECT

1. Challenges
• Load balancing: moving from static to dynamic.
• Communication bottleneck: adapting bin size.

2. Parallel schemes
• Master-slave

STATIC: static load balancing.
DLBMS01: dynamic load balancing with bin size 1.
DLBMS10: dynamic load balancing with bin size 10.

master 0

slave n

slave 1

slave 2
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Application in Aircraft Design: HSCT
Parallel DIRECT (cont.)

• Distributed control

DLBDC: dynamic load balancing with fully distributed control.

DLBDCT: dynamic load balancing with fully distributed control using pthreads.

3

1

0

n 4

2

• Aggressive DIRECT

Discard the step of identifying potentially optimal box set. Each box with the
smallest objective function value for that box size is considered “potentially
optimal”. This results in a much larger set of new tasks to be evaluated and load
balanced at each iteration.
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Application in Aircraft Design: HSCT
Task history comparison
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Application in Aircraft Design: HSCT
Time distribution comparison
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Application in Aircraft Design: HSCT
Parallel efficiency comparison
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Application in Wireless Design: S 4W
Problem scenario

1. Transmitter placement optimization: ensuring an acceptable level (threshold)
of wireless system performance within a geographical area of interest at a
minimum cost.

Durham Hall 4th floor, Virginia Tech
2. Problem abstraction:

min
x∈D

f0(x),

D = {x ∈ D0 | fj(x) ≤ 0, j = 1, . . . , J},
where D0 =

{

x ∈ En | ℓ ≤ x ≤ u
}

is a simple box constraint set.
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Application in Wireless Design: S 4W
Objective formulation

1. Power coverage:

Number of receivers with received power above threshold

Total number of receivers

2. Bit error rate (BER):

Number of incorrectly received bits

Total Number of received bits

3. Observation: Discrete vs. continuous.

4. Reformulation:
• Decision variables for n transmitters over m receivers:

X = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn),

where zi = z0.
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Application in Wireless Design: S 4W
Objective formulation (cont.)

• Objective function
Average shortfall of the estimated performance metric from the given threshold T:

f(X) =























1

m

m
∑

i=1

(T − pki)+, coverage,

1

m

m
∑

i=1

(pki − T )+, BER.

pki: performance metric of transmitter (k,i) evaluated at the ith receiver location,
where transmitter (k, i), located at (xk, yk, z0), 1 ≤ k ≤ n, generates the
highest power level Pki(xk, yk, z0) ≥ Pji(xj , yj , z0), 1 ≤ j ≤ n, at the receiver
location i, 1 ≤ i ≤ m.
Power coverage optimization:

pki = Pki(xk, yk, z0), (T − pki)+ is the penalty for a low power level.

BER optimization:

pki = log10 (BERki), (pki − T )+ is the penalty for a high bit error rate.
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Application in Wireless Design: S 4W
Problem solving environment

Tcl/Tk script

DIRECT

site map

Ray Tracer

Triangulation
XML

Conversion
Space

Partitioning

f(X)

Beowulf clusterSun workstation

X

• Problem decomposition
• Parallel processing
• Interprocess communication
• Surrogate modeling
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Application in Wireless Design: S 4W
Optimization results

y, m

806040200
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x, m
f

2.7

2.6

iteration

60 8020 40

Power coverage optimization results for three transmitters. The starting (optimal)
locations are marked with circles (crosses).
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Application in Wireless Design: S 4W
Optimization results
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BER optimization results for two transmitters. The starting (optimal) locations are
marked with circles (crosses).
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Budding Yeast Cell Cycle

The problem considered here is a model of the cell cycle of budding yeast (also

known as brewer’s or baker’s yeast). In the cell cycle, the yeast cell must perform

various actions (checkpoints) in the proper order (e.g., the chromosomes must be

duplicated before they can be aligned, and the chromosomes must be aligned

before they can be separated).

The model.

The model of the cell cycle consists of 36 ODEs with 143 regression parameters.

The checkpoints are modeled by a variable rising through a threshold value.
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The experimental data.

Biologists over or under express one or more genes in the cell, and then observe
how the cell proceeds.

The biologists can observe the size at which the cell divides, and the time it takes
to pass certain checkpoints.

If the cell dies, the biologists can determine if it had passed certain checkpoints or
not.

The information for each experiment can then be condensed into a six-tuple
(v, g, m, a, t, c)—viability, G1 length, mass at division, arrest stage, arrest type,
number of cell cycles completed.

There are about 120 experiments applicable to this model.

In the model, the checkpoints are indicated by a variable rising through a threshold
value. In this way, the ODE solutions are converted to a six-tuple that can be
compared to the experimental data.
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The objective function.

R(O, P ) =































ωg ×
(

Og−Pg

σg

)2

+ ωm ×
(

ln
Om
Pm

σm

)2

, Ov = Pv = viable,

ωv × 1

1+Pc
, Ov = viable, Pv = inviable,

δO,P + ωc ×
(

Oc−Pc

σc

)2

, Ov = Pv = inviable,

ωv × 1

1+Oc
, Ov = inviable, Pv = viable,

where the ωs and σs are weighting constants, and δ is a real valued discrete
function, used to assess a penalty for the arrest stage and type, given by

δO,P =

{

ωa, if Oa 6= Pa,
ωt, if Oa = Pa and Ot 6= Pt,
0, if Oa = Pa and Ot = Pt.
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Parallel VTDIRECT results.

The center of the hyperbox was the biologist’s best point. In most dimensions,
the bounds were 100-fold of the biologist’s best point. A few of the dimensions
were more tightly constrained because the respective parameters were known
with more accuracy.

Ran for 40 hours on 512 processors (equivalent to 20,000 hours on one processor).

Evaluated 1,500,000 points over 813 iterations.

The biologist’s best point was scored at 433; the point found by VTDIRECT
scored 212.

Parallel MADS results.

Used the same bounding box as VTDIRECT, with the starting point set to the
biologist’s best point.

Ran for 6 hours on 64 processors (equivalent to 400 hours on one processor).

Evalated 135,000 points over 473 iterations.

The best point found by MADS scored 299.

46 Virginia Tech



Best point vs. number of evaluations
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Conclusion
1. Effectiveness of DIRECT

The DIRECT algorithm solves global optimization problems effectively, especially
for continuous unconstrained problems. However, future work is needed for
solving discrete problems and nonlinear constrained problems.

2. Dynamic implementation
Addresses the issues of
• data structure extensibility,
• memory allocation efficiency,
• and computation simplicity.

3. Parallel implementation
Massively parallel code features
• load balancing via distributed data,
• flexible schemes for different cost functions,
• multiple termination criteria,
• output multiple best boxes with centers separated by MIN SEP,
• robust checkpointing for hot restarts.

4. Future research
• Petascale versions of VTDIRECT and MADS.
• Hybrid algorithm combining the global features of VTDIRECT with the local

efficiency of MADS.
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